Code: 20ME4501C

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

MODERN MACHINING METHODS (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
		UNIT-I			,			
1	a)	Indicate the term Non-traditional machining	L2	CO1	7 M			
		methods? What is their importance?						
	b)	How are 'Unconventional machining	L2	CO1	7 M			
		methods' classified?						
	OR							
2	a)	Explain briefly with a neat sketch the	L2	CO1	7 M			
		principle and working of Ultrasonic						
		machining process.						
	b)	What are the advantages and disadvantages	L2	CO1	7 M			
		of Ultrasonic machining process?						
UNIT-II								
3	a)	Discuss the significance of important	L2	CO1	7 M			
		process parameters in WJM process with a						
		neat sketch.						

	b)	What are the applications and limitations of	L2	CO1	7 M		
		WJM?					
		OR		1			
4	a)	Discuss the working principle and process	L2	CO1	7 M		
		parameters affecting material removal in					
		AJM with a neat sketch.					
	b)	Write the applications and limitations of	L2	CO1	7 M		
		AJM.					
				1			
UNIT-III							
5	a)	Illustrate the working principle of Chemical	L3	CO2	7 M		
		machining process with a neat sketch.					
	b)	Explain the mechanism of material removal	L3	CO2	7 M		
		involved in the electrochemical machining.					
	,	OR		1			
6	a)	Differentiate between electrochemical and	L3	CO2	7 M		
		chemical machining processes.					
	b)	Discuss the working principle of Electro	L3	CO2	7 M		
		stream drilling process with the help of a					
		neat sketch.					
	•			1			
		UNIT-IV					
7	a)	Illustrate the working principle of Wire-	L3	CO3	7 M		
		EDM process with neat sketch.					
	b)	Write the advantages and applications of	L3	CO3	7 M		
		EDM.					
OR							

8	a)	Describe the dielectric fluids commonly	L2	CO3	2 M	
		used in EDM.				
	b)	Illustrate the working principle and basic	L3	CO3	12 M	
		elements of EDG machining process with				
		neat sketch.				
UNIT-V						
9	a)	Illustrate the working principle of the LBM	L3	CO4	7 M	
		process with a neat sketch.				
	b)	Write any five industrial applications of	L3	CO4	7 M	
		Laser Beam Machining process.				
OR						
10	a)	Explain the metal removal mechanism and	L3	CO4	7 M	
		process parameters of Plasma Arc				
		Machining.				
	b)	Write applications of plasma in	L3	CO4	7 M	
		manufacturing industries.				